Project ID: EEMS025

U.S. DEPARTMENT OF ENERGY

SMARTMOBILITY

Systems and Modeling for Accelerated Research in Transportation

National Scale Multi-Modal Energy and GHG Analysis of Inter-City Freight

Yan (Joann) Zhou

U.S. Department of Energy Vehicle Technologies Office 2017 Annual Merit Review And Peer Evaluation Meeting June 7, 2017

Project Overview

Timeline

- Project start: Oct. 2016
- Project end: Sept. 2019
- Completion: 25%

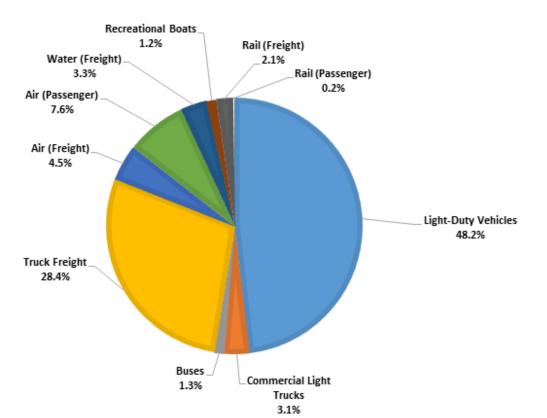
Budget

- FY17: \$80K/yr
- * Funding amount is for this task only, not for the entire pillar

Barriers

- Limited understanding on national energy impacts of smart technologies on inter-city freight
- Limited understanding on potential energy saving due to mode shift

Partners



^{*} Funding amount by lab is for this task only, not for the entire pillar

Project Overall Objectives/Relevance

☐ Analyze national level energy and emission impacts of inter-city freight due to smart technologies using Argonne's NEAT model

Potentially some of the freight energy use and associated GHG emissions be reduced by

- 1) Smart technologies (e.g. platooning)
- 2) Mode shift (shifting from trucks to rail)

Q: How much could be reduced?

Source: AEO 2016 REFERENCE CASE

Schedule/Milestones

Year	Q	Quarterly Milestone	Progress
FY17	Q2	Preliminary impact quantification of long haul freight energy implications.	Completed
FY 18	Q3	Updated energy impact quantification	In-process

Approach

Based on literature, real-world data and simulation/modeling results

- ☐ Work with NREL, ORNL and INL to establish limits to the following factors due to futuristic inter-city freight operations and smart technologies
 - modal efficiencies
 - freight mode shares

FY17 focus on high level national impacts of low-level automation

- Reviewed literature and Smart CAVs pillar analysis/modeling results to identify:
 - upper limits of truck efficiency due to platooning
 - possible platoonable mileages
- ☐ Incorporated results from literature and CAVs pillar analysis to Argonne's NEAT model to quantify possible national energy impacts

NEAT for National Scale Freight Energy Analysis

- Argonne's NEAT model can identify "size of the prize" of <u>inter-city</u> freight due to
 - > Potential mode shift
 - ➤ Improved efficiency (e.g. platooning)
 - ➤ Demand changes by commodity
 - ➤ Increased alternative fuel use
 - ➤ Alternative economic, regulatory, and policy scenarios
- NEAT model is publicly available, annually updated and calibrated to match AEO and FAF projections

Freight Mode Major Inputs Freight Ton-miles Truck **Modal Energy Intensity Domestic** Marine Mode Share by Commodity Rail **Energy and Emission Rate** Air **Freight** all inputs are by commodity type **Pipeline**

Assumptions Used in Our Analysis

Based on literature and SMART MOBILITY results

□ Platoonable ton-miles increase from 0% to 65% over the time horizon of 2015 ~ 2040 □ Energy intensity (BTU/ton-miles) decrease 4% for leading trucks and 10% for following trucks. On average, one leading truck is followed by 3 following trucks □ Sensitivity analysis: the platoonable ton-miles varies from 50% ~ 80% at 2040 □ Analysis horizon: 2016- 2040

All assumptions will be updated when better information is available within the pillar and from other pillars

Research Gaps from Existing Studies

Very few studies investigated the truck efficiency change by commodity type
Limited studies on the amount of time and distance available for platooning
Limited studies on the fuel savings or increase in platoon formation
Limited information reported on payload (weight of truck) and commodity types when platooning
Limited studies on fuel savings potential of individual trucks making a trip that are a part of platoons along the way
Most of the experimental studies have been conducted on empty roads (no

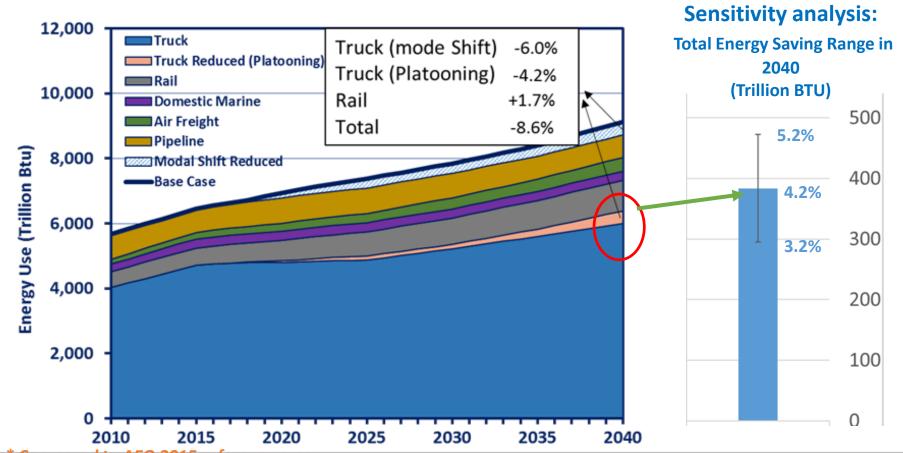
traffic congestion) with trucks that are the same weight

Truck Fuel Saving Due to Platooning Varies in a Wide Range (Summary of Literature Review)

- ☐ Lead Truck: 2%-7%
- ☐ Trail Truck: 3%-16% depending on gap
- ☐ Tandem fuel saving: 3%-15% depending on gap and # of trucks
- Trucks should be ordered based on mass for maximum fuel efficiency
- Shorter spaces in between trucks lead to greater fuel savings
- Reported saving are averaged out so that slope of road is not taken into consideration
- ☐ Fuel efficiency in the formation of platoons: adjusting speeds for the splitting and merging of platoons is still more efficient that not being a part of a platoon at all

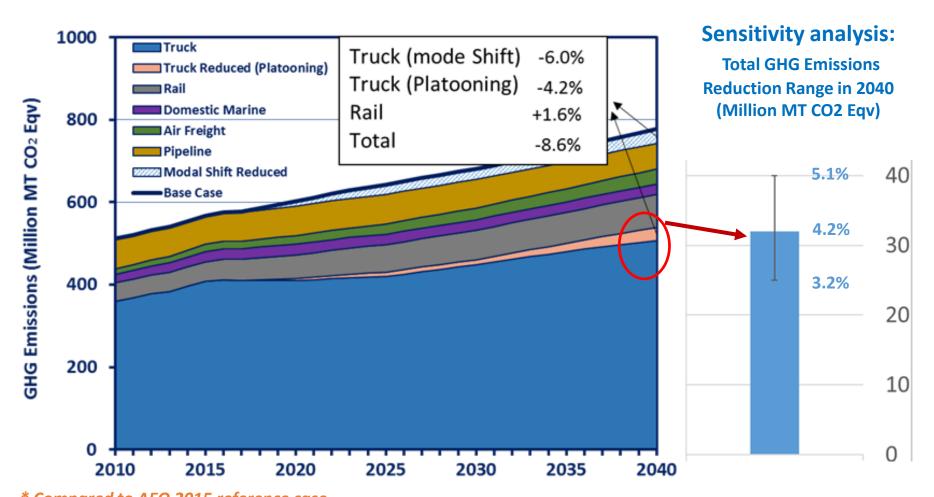
Platoonable Miles/Time Vary by Speed and Continuation Beyond Certain Speed (Summary of Literature Review)

- SMART CAVs/9E NREL report: platoonable miles by time thresholds (amount of time continuously driven above 50 mph)
 20% 85% platoonable miles (2 min − 90 min)
- ☐ FHWA/AUBURN study: developed optimization algorithms to better understand what affects platoon formations
 - Lead truck speed adjustment influences number of platoons could be formed, but increase time delays
 - Energy consumption of accelerating when forming could cancel out the benefits of a platoon
 - Road saturation affects platooning opportunities more trucks on road within smaller distances between them can lead to more platoon formations



Annual Freight Sector Energy Consumption Could Be Reduced By About 5% Due To Truck Platooning In 2040

Earlier analysis indicates mode shift from truck to rail could reduce truck energy consumption by 6% in 2040



Annual Freight Sector GHG Emissions Could Be Reduced By About 5% Due To Truck Platooning In 2040

Collaboration

☐ Collaborate with Idaho National Laboratory, National Renewable Energy Laboratory and Oak Ridge National Laboratory on data collection and identifying research needs

Remaining Challenges and Barriers

- ☐ Lack of real-world freight data with smart technologies
 - Collaboration with various organizations
 - Modeling and simulations to produce needed inputs
- Hard to quantify impacts on freight efficiency and mode shares by commodity type
- ☐ Uncertain about how smart technologies would affect freight operation cost

Planned/Proposed Future Work

☐ Convert fuel saving % to energy consumption per ton-miles (BTU/Ton-miles) Investigate fuel saving by commodity, payload and distance traveled Convert platoonable miles/times to platoonable ton-miles Identify efficiency improvement due to other smart technologies other than platooning, such as better logistic operation ☐ Identify future inter-city freight demand due to increasing fast/guaranteed shipping (demand higher than AEO/FAF projections) Incorporated results and data from other members within MM pillar and CAVs pillar analysis to characterize benefits from key Smart Mobility technologies (e.g. FleetDNA, UPS data)

Summary

- Objective of this project is to analyze national level energy and emission impacts of inter-city freight due to smart technologies, with FY17 focus on high level national impacts of low-level automation: platooning
- ☐ We assumed energy efficiency change and platoonable ton-miles based on literature review and Smart Mobility CAV results
- ☐ Preliminary national estimate by NEAT model shows up to 5.2% annual energy reduction due to truck platooning in 2040
- ☐ We will develop methodology and assumptions to convert efficiency fuel saving % to energy consumption per ton-miles (BTU/Ton-miles)
- ☐ We will continue to work with other labs to establish limits to the following factors due to futuristic inter-city freight operations and smart technologies

